

คณบดีวิศวกรรมศาสตร์
มหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์
เลขรับ 3979
วันที่ 25-07-2568
เวลา 14:32 น.

บันทึกข้อความ

ส่วนราชการ งานวิเทศสัมพันธ์ สำนักงานอธิการบดี โทรศัพท์ ๐-๗๔๓๑-๗๑๔๒, ๐-๗๔๓๑-๗๑๔๓
ที่ วันที่ ๒๕ กรกฎาคม ๒๕๖๘
เรื่อง ขอความอนุเคราะห์ประชาสัมพันธ์หนังสือด้านต่างประเทศ

เรียน หัวหน้าหน่วยงานในสังกัดมหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์

พร้อมหนังสือฉบับนี้ งานวิเทศสัมพันธ์ สำนักงานอธิการบดี ขอส่งหนังสือเพื่อประชาสัมพันธ์
จำนวน ๒ ฉบับ ดังต่อไปนี้

๑. หนังสือสำนักงานปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัย และนวัตกรรม ที่ ว่า ๐๒๐๑๓
/๑๑๓๐๙๔ ลงวันที่ ๔ กรกฎาคม ๒๕๖๘ เรื่อง ประชาสัมพันธ์โครงการ International Academic Partnership
Program ๒๐๒๕ (IAPP ๒๐๒๕)

๒. หนังสือสำนักงานปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัย และนวัตกรรม ที่ ว่า ๐๒๐๒๒
/๑๒๒๕๖๖ ลงวันที่ ๔ กรกฎาคม ๒๕๖๘ เรื่อง ประชาสัมพันธ์บทสรุปเชิงนโยบายด้านวิทยาศาสตร์และ
เทคโนโลยีความตั้มเพื่อความทั่วถึงและยั่งยืน (Policy Brief on Quantum Science for Inclusion and
Sustainability)

จึงเรียนมาเพื่อโปรดพิจารณา

เรียน คณบดี
-เพื่อโปรดพิจารณา
สำนักงานอธิการบดี ขอความอนุเคราะห์ประชาสัมพันธ์
หนังสือด้านต่างประเทศ
-เห็นควรมอบงานวิเทศสัมพันธ์ดำเนินการประชาสัมพันธ์

(นางสาวลุมล กษุรินทร์)
ผู้ช่วยอธิการบดี

พรเพ็ญ
30/7/2568

30 ก.ค. 68

30 ก.ค. 2568

ทราย แคลมอนด์

30 ก.ค. 68

สำเนารวม

เรียน	คณบดีคณะวิศวกรรมศาสตร์
เรียน	คณบดีคณะศิลปศาสตร์
เรียน	คณบดีคณะสถาปัตยกรรมศาสตร์
เรียน	คณบดีคณะบริหารธุรกิจ
เรียน	คณบดีคณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
เรียน	คณบดีคณะเกษตรศาสตร์
เรียน	คณบดีคณะอุตสาหกรรมเกษตร
เรียน	คณบดีคณะสัตวแพทยศาสตร์
เรียน	คณบดีคณะวิทยาศาสตร์และเทคโนโลยี
เรียน	คณบดีคณะเทคโนโลยีการจัดการ
เรียน	คณบดีคณะวิทยาศาสตร์และเทคโนโลยีการประมง
เรียน	คณบดีคณะวิศวกรรมศาสตร์และเทคโนโลยี
เรียน	ผู้อำนวยการวิทยาลัยรัตภูมิ
เรียน	ผู้อำนวยการวิทยาลัยเทคโนโลยีอุตสาหกรรมและการจัดการ
เรียน	ผู้อำนวยการวิทยาลัยการโรงแรมและการท่องเที่ยว

ด่วนที่สุด

ที่ อาจ ๐๒๐๒.๓/วอ๓๐๔๔

ถึง สถาบันอุดมศึกษาในสังกัด อว.

มหาวิทยาลัยราชภัฏโลีราชมหิดล
2825
เลขรับ 04/07/2568
วันที่ 15.18
เวลา น.

สอ. 2317
4 ก.ค. 68
15.33 น.

สอ.วิชาการ 1239
14 ก.ค. 2568
13.28 น.

ด้วยสำนักงานปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรมได้ร่วมกับสถานเอกอัครราชทูตสหรัฐอเมริกาประจำประเทศไทย โดย Institute of International Education (IIE) ประจำประเทศไทย ดำเนินโครงการ International Academic Partnership Program 2024 (IAPP Thailand 2024) เพื่อส่งเสริมความเป็นทุนส่วนความร่วมมือทางวิชาการระหว่างสถาบันอุดมศึกษาไทยกับสหรัฐอเมริกา (Thai - U.S. University Partnership) และสร้างเครือข่ายความร่วมมือระดับสถาบันอุดมศึกษาอย่างยั่งยืน ในอนาคต โดยในปี ๒๕๖๗ สหรัฐอเมริกาได้จัดสรรงบประมาณเพื่อสนับสนุนกิจกรรมภายใต้โครงการ IAPP Thailand 2024 ในการผลักดันยุทธศาสตร์ความร่วมมือทางวิชาการระหว่างสถาบันอุดมศึกษาของไทยและสหรัฐอเมริกา มีเป้าหมายเพื่อเพิ่มจำนวนนักศึกษาไทยในสหรัฐอเมริกา โดยสถาบันอุดมศึกษาที่ได้รับคัดเลือกให้เข้าร่วมโครงการฯ มีจำนวนทั้งสิ้น ๔๕ แห่ง แบ่งออกเป็นสถาบันอุดมศึกษาของสหรัฐอเมริกา จำนวน ๑๙ แห่ง และสถาบันอุดมศึกษาของไทย จำนวน ๒๖ แห่ง

สืบเนื่องจากความสำเร็จของการดำเนินโครงการฯ ในปี ๒๕๖๗ สำนักงานปลัดกระทรวงการอุดมศึกษา ได้รับแจ้งจาก IIE ว่าสถานเอกอัครราชทูตสหรัฐอเมริกาประจำประเทศไทยมีความประสงค์ที่จะร่วมสนับสนุนและดำเนินโครงการ IAPP Thailand 2025 ในปี ๒๕๖๘ โดยจะมุ่งเน้นในเรื่องการส่งเสริมความร่วมมือทางวิชาการระหว่างสถาบันอุดมศึกษาที่มีความโดดเด่นในด้านวิทยาศาสตร์ เทคโนโลยี วิศวกรรมศาสตร์ คณิตศาสตร์ (STEM) และเศรษฐกิจดิจิทัล ซึ่งได้กำหนดระยะเวลาการดำเนินโครงการในช่วงระหว่างเดือนมิถุนายน ๒๕๖๘ – เมษายน ๒๕๖๙ จึงขอประชาสัมพันธ์ข้อมูลโครงการดังกล่าวให้แก่สถาบันอุดมศึกษาที่สนใจเข้าร่วมโครงการในปีนี้และที่เคยเข้าร่วมโครงการในปีที่ผ่านมา หากสนใจสามารถติดต่อผู้ประสานงานของ IIE ได้โดยตรงที่ คุณชัยณรงค์ ทองบุญชื่น ไปรษณีย์อิเล็กทรอนิกส์ Chongboonchuen@iie.org หรือ หมายเลขโทรศัพท์ ๐๒ ๑๕๐ ๔๗๐ ๔๗๑

จึงแจ้งมาเพื่อโปรดพิจารณาดำเนินการในส่วนที่เกี่ยวข้องต่อไปด้วย จะขอบคุณยิ่ง

รองรัฐมนตรี
๒๖ ก.ค. ๒๕๖๘

กองการต่างประเทศ
กลุ่มขับเคลื่อนทุนมนุษย์นานาชาติ
โทรศัพท์ ๐ ๒๖๑๐ ๔๔๕๐ (รัชฎาพร)
โทรสาร ๐ ๒๓๕๕ ๔๕๗๐
ไปรษณีย์อิเล็กทรอนิกส์ rachadaporn.s@mhesi.go.th

Dear President,
MHEI sends a letter for universities to publish IAPP Thailand 2025, International Academic Partnership Program Thailand focus on STEM and the digital economy.

Please kindly assign International Affairs to publish to Faculty/college.

14/07/2025

The Power
of International
Education

อินสติทิว ออฟ อินเตอร์เนชั่นแนล เอดูเคชั่น อิงค์
(Institute of International Education, Inc.)
ชั้น 6 อาคารมณีญาเน็ชั่นเตอร์เนชั่น
518/3 ถนนเพลินจิต แขวงคลุมพินี เขตปทุมวัน
กรุงเทพฯ 10330
โทร. 02 652 0653

วันที่ 1 กุมภาพันธ์ พ.ศ. 2568

เรื่อง ขอความอนุเคราะห์ประชาสัมพันธ์โครงการ IAPP Thailand 2025

เรียน ปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม

สิ่งที่ส่งมาด้วย เอกสารประชาสัมพันธ์โครงการ IAPP Thailand 2025

จากความร่วมมือระหว่างสถานเอกอัครราชทูตสหรัฐอเมริกาประจำประเทศไทย กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม และ อินสติทิว ออฟ อินเตอร์เนชั่นแนล เอดูเคชั่น อิงค์ (IIE) ในการดำเนินโครงการ International Academic Partnership Program Thailand (IAPP Thailand 2024) ในปี พ.ศ. 2567 ที่ผ่านมา โดยมีสถาบันอุดมศึกษาจากสหรัฐอเมริกา จำนวน 19 แห่ง และจากประเทศไทย จำนวน 29 แห่ง รวมจำนวนทั้งสิ้น 48 แห่งเข้าร่วมโครงการ ซึ่งโครงการได้รับความสำเร็จเป็นอย่างยิ่งแล้วนั้น

ด้วยความสำเร็จดังกล่าว สถานเอกอัครราชทูตสหรัฐอเมริกา ในฐานะผู้สนับสนุนโครงการ จึงได้ดำเนินการต่ออายุโครงการสำหรับปี พ.ศ. 2568 (IAPP Thailand 2025) โดยมีเป้าหมายเพื่อมุ่งเน้นและส่งเสริมความร่วมมือทางวิชาการระหว่างสถาบันอุดมศึกษาที่มีความต้องเด่นทางด้าน วิทยาศาสตร์ เทคโนโลยี วิศวกรรมศาสตร์ คณิตศาสตร์ (STEM) และเศรษฐกิจดิจิทัล ซึ่งได้กำหนดระยะเวลาโครงการระหว่างเดือนมิถุนายน พ.ศ. 2568 ถึงเดือนเมษายน พ.ศ. 2569 และขณะนี้ได้ดำเนินการเปิดรับสมัครจนถึงวันที่ 31 กุมภาพันธ์ พ.ศ. 2568 สำหรับสถาบันอุดมศึกษาไทยที่สนใจเข้าร่วม รวมถึงสถาบันอุดมศึกษาที่เคยเข้าร่วมโครงการแล้วในปีที่ผ่านมา

เพื่อเป็นการส่งเสริมการดำเนินโครงการให้มีความสำเร็จเป็นไปอย่างต่อเนื่อง อินสติทิว ออฟ อินเตอร์เนชั่นแนล เอดูเคชั่น อิงค์ (IIE) จึงครับ ขอความอนุเคราะห์จากกระทรวงฯ เพื่อประชาสัมพันธ์โครงการดังกล่าวแก่สถาบันอุดมศึกษาที่อยู่ภายใต้ความดูแลของท่าน ทั้งนี้ทางอินสติทิว ออฟ อินเตอร์เนชั่นแนล เอดูเคชั่น อิงค์ (IIE) ได้แนบเอกสารประชาสัมพันธ์โครงการมาพร้อมกับหนังสือฉบับนี้ด้วยแล้ว

อนึ่ง หากท่านต้องการข้อมูลเพิ่มเติม ได้โปรดติดต่อ คุณชัยณรงค์ ทองบุญชื่น ผู้ประสานงานหลัก ที่อีเมล Chongboonchuen@iie.org หรือหมายเลขโทรศัพท์ 02-180-8746

จึงเรียนมาเพื่อขอความอนุเคราะห์ จักขอบพระคุณยิ่ง

ขอแสดงความนับถือ

(ดร. จนาธน เลิมไบรท์)

ผู้อำนวยการภาคพื้นเอเชียตะวันออกเฉียงใต้
อินสติทิว ออฟ อินเตอร์เนชั่นแนล เอดูเคชั่น อิงค์

International Academic Partnership Program

IAPP Thailand 2025

With the partnership and support of the U.S. Embassy Bangkok and the Ministry of Higher Education, Science, Research and Innovation (MHESI), the Institute of International Education (IIE) invites your institution to apply for the International Academic Partnership Program initiative focused on Thailand (IAPP Thailand 2025) with a thematic focus on **STEM and the digital economy**. This initiative will engage a select group of U.S. and Thai higher education institutions in a dynamic and strategic effort to establish and deepen academic partnerships between Thailand and the United States.

ACTIVITIES

Strategic planning process

including guidelines for assessing on-campus international partnership capacity and developing practical strategic plans for partnership activities in Thailand and the United States.

Expert advice and guidance

on developing or expanding a strategic plan for partnerships with Thailand and the United States.

Study tour in Thailand and USA

to visit higher education institutions, educational exchange organizations and government partners.

A series of training webinars

focused on topics such as implementing strategic partnerships, developing a consolidated Thailand/U.S. strategy, and the Thai/U.S. higher education landscape.

APPLY NOW FOR IAPP THAILAND 2025

The IAPP Thailand 2025 program is **open to all accredited U.S. and Thai colleges and universities**, including participants from IAPP Thailand 2024.

Deadline: July 31, 2025

<https://bit.ly/IAPPTHAILAND2025>

For more information:

Chainarong Thongboonchuen

CThongboonchuen@iie.org

Hathaiphat Kongpoe

HKongpoe@iie.org

มหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย	ส. 2300
เลขรับ 2808	4 ก.ค. 68
วันที่ 04/07/2568	12.30 น.
เวลา 09.45	

ที่ ฯ ๐๒๐๒.๒/๖๑๒๘๖

เรื่อง สถาบันอุดมศึกษาในสังกัด ฯ.

ส.วิชาการ 1238
14 ก.ค. 2568
13.25 น.

ด้วยองค์การยูเนสโกเมืองสีอุปราชานัมพันธ์แจ้งประเทศไทยเกี่ยวกับการเผยแพร่บทสรุปเชิงนโยบายด้านวิทยาศาสตร์และเทคโนโลยีความตั้มเพื่อความทั่วถึงและยั่งยืน (Policy Brief on Quantum Science for Inclusion and Sustainability) โดยมีวัตถุประสงค์เพื่อเน้นความสำคัญของการเข้าถึงองค์ความรู้และโครงสร้างพื้นฐานด้านความตั้มอย่างเท่าเทียม สนับสนุนให้ประเทศไทยออกแบบนโยบายด้านวิทยาศาสตร์และเทคโนโลยีความตั้มที่ทั่วถึงและมุ่งไปสู่อนาคต รวมทั้งส่งเสริมความร่วมมือระดับนานาชาติและการหารือในภูมิภาคเพื่อร่วมแบ่งปันการสร้างขีดความสามารถ โดยมีรายละเอียดตาม QR code ที่ปรากฏด้านล่าง

ในการนี้ สำนักงานปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม ขอประชาสัมพันธ์ บทสรุปเชิงนโยบายดังกล่าวให้แก่หน่วยงานที่เกี่ยวข้องเพื่อนำไปใช้ประโยชน์ต่อไป โดยสามารถดาวน์โหลดเอกสารดังกล่าวได้ที่ <https://unesdoc.unesco.org/ark:/48223/pf0000393921>

จึงเรียนมาเพื่อโปรดดำเนินการที่เกี่ยวข้องต่อไป จะขอบคุณยิ่ง

สมนิษฐ์ โนนินทร์
๗๗.๗.๗ ว.ร.

Dear President,

MHESI send a letter to publish on Policy Brief on Quantum Science for Conclusion and Sustainability.

Please kindly assign International Affairs to publish to Faculty/college

14/07/2025

กองการต่างประเทศ

โทร. ๐ ๒๖๑๐ ๕๓๙๙ (พงษ์พัฒน์)

โทรสาร ๐ ๒๓๕๕ ๕๕๗๐

ไปรษณีย์อิเล็กทรอนิกส์ Phongphat.k@mhesi.go.th

(<https://mhesi.e-office.cloud/d/e99b2161>)

ที่ ศธ ๐๒๐๔/๙๗

๒๕ มิถุนายน ๒๕๖๘

เรื่อง บทสรุปเชิงนโยบายด้านวิทยาศาสตร์และเทคโนโลยีความต้มเพื่อความทั่วถึงและยั่งยืน

เรียน ปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม

สิ่งที่ส่งมาด้วย สำเนาหนังสือองค์กรยูเนสโก Ref: SC/PBS/RIE/25/5289 ลงวันที่ ๒๕ มิถุนายน ๒๕๖๘

ด้วยองค์กรยูเนสโกมีหนังสือแจ้งประเทศสมาชิกเกี่ยวกับการเผยแพร่บทสรุปเชิงนโยบายด้านวิทยาศาสตร์และเทคโนโลยีความต้มเพื่อความทั่วถึงและยั่งยืน (Policy Brief on Quantum Science for Inclusion and Sustainability) ซึ่งมีวัตถุประสงค์เพื่อเน้นความสำคัญของการเข้าถึงองค์ความรู้และโครงสร้างพื้นฐานด้านความต้มอย่างเท่าเทียม สนับสนุนให้ประเทศสมาชิกออกแบบนโยบายด้านวิทยาศาสตร์และเทคโนโลยีความต้มที่ทั่วถึงและมุ่งไปสู่อนาคต รวมทั้งส่งเสริมความร่วมมือระดับนานาชาติและการหารือในภูมิภาคเพื่อร่วมแบ่งปันการสร้างขีดความสามารถ รายละเอียดสามารถดูได้ทางเว็บไซต์ตาม QR code ท้ายหนังสือฉบับนี้

สำนักเลขานุการคณะกรรมการแห่งชาติฯ ด้วยการศึกษา วิทยาศาสตร์ และวัฒนธรรมแห่งสหประชาชาติ (ยูเนสโก) กระทรวงศึกษาธิการ จึงขอความร่วมมือหน่วยงานของท่านในการพิจารณาประชาสัมพันธ์บทสรุปเชิงนโยบายดังกล่าวให้แก่หน่วยงานที่เกี่ยวข้องในสังกัดเพื่อนำไปใช้ประโยชน์ต่อไป

จึงเรียนมาเพื่อโปรดพิจารณาดำเนินการต่อไปด้วย จดขอบคุณยิ่ง

ขอแสดงความนับถือ

(นางสาวจิตราดา จันทร์ແຮຍ)

รักษาการแทนผู้อำนวยการสำนักความสัมพันธ์ต่างประเทศ
ในฐานะรองเลขานุการคณะกรรมการแห่งชาติฯ ด้วยการศึกษา
วิทยาศาสตร์ และวัฒนธรรมแห่งสหประชาชาติ

ลิงค์บทสรุปเชิงนโยบาย

To all Permanent Delegates
and Observers to UNESCO

cc: National Commissions for
UNESCO

24 June 2025

**The Assistant Director-General
For Priority Africa and External Relations a.i.**

Ref: SC/PBS/RIE/25/5289

Sir/Madam,

I am pleased to inform you that UNESCO has released a new Policy Brief on Quantum Science for Inclusion and Sustainability, which has been developed in the framework of the organization's work on science and emerging technologies.

This policy brief addresses the growing global interest in **Quantum Science and Technology (QST)** and highlights its relevance to achieving the **Sustainable Development Goals (SDGs)**. It examines the risks of a widening quantum divide and proposes **actionable recommendations for policy and capacity-building** that ensure QST develops ethically, inclusively, and aligned with sustainable development priorities.

The brief contributes directly to UNESCO's strategic objectives by:

- Highlighting the importance of equitable access to quantum knowledge and infrastructure;
- Supporting Member States in designing inclusive and future-oriented QST policies;
- Encouraging international cooperation and regional dialogue for shared capacity-building.

It builds upon UNESCO's broader efforts, including the **International Year of Quantum Science and Technology (IYQ 2025)** and the **International Decade of Sciences for Sustainable Development (IDSSD; 2024–2033)**.

The policy brief is attached herewith and is also available for download at the following link:

<https://unesdoc.unesco.org/ark:/48223/pf0000393921>

We hope this document will serve as a useful reference for policy formulation and strategic planning in your country.

Ms. Amal Kasry, Chief of the Basic Sciences, Research, Innovation and Engineering Section (email :a.kasry@unesco.org), is available if you require further information.

Please accept, Sir/Madam, the assurances of our highest consideration.

Xing Qu

Enc.

Quantum Science for Inclusion and Sustainability

Policy brief

Published in 2025 by the United Nations Educational, Scientific and Cultural Organization,
7, place de Fontenoy, 75352 Paris 07 SP, France

© UNESCO 2025

ISBN 978-92-3-100768-2

DOI 10.54677/HRGW9569

This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (<http://creativecommons.org/licenses/by-sa/3.0/igo/>). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (<https://www.unesco.org/en/open-access/cc-sa>).

Images marked with an asterisk (*) do not fall under the CC-BY-SA license and may not be used or reproduced without the prior permission of the copyright holders.

The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization.

This Policy Brief was authored by **Amal Kasry, Chief of Section for Basic Sciences, Research, Innovation and Engineering, Natural Sciences Sector, UNESCO**.

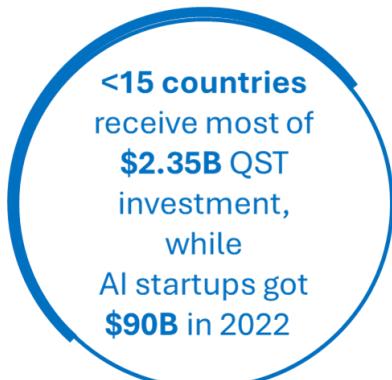
Cover photo: © **pixalane/Shutterstock***

Figure 1: Created by **Amal Kasry**

Diagrams 1 and 2: Created by **Jingyi Zhao**

SHORT SUMMARY

Closing the Quantum Gap to Advance the SDGs


Quantum Science and Technology (QST) is rapidly emerging as a transformative field, with the potential to impact sectors such as healthcare, energy, agriculture, and secure communication. Its relevance to the Sustainable Development Goals (SDGs) is increasingly recognized. However, access to its benefits remains highly uneven.

In 2022, quantum technology startups attracted **\$2.35 billion** in investments, an all-time high, yet still modest compared to the **\$90+ billion** invested globally in Artificial Intelligence (AI) startups the same year. While QST investment is projected to grow to **\$8 billion by 2030**, it remains significantly behind AI, both in scale and geographic distribution, highlighting the need for **immediate, coordinated action to avoid widening the divide**.

Moreover, this investment is heavily concentrated in **fewer than 15 countries**, leaving a huge number of countries in several regions without national strategies or the capacity to meaningfully participate in shaping the quantum future. **If urgent measures are not taken, this gap will deepen, excluding entire regions from the benefits of quantum advancement.**

UNESCO calls for proactive and equitable strategies to ensure QST contributes to a fairer, more inclusive global future.

This Policy Brief is intended primarily for UNESCO Member States and policymakers, but is also relevant to educators, researchers, international development partners, and science communicators engaged in shaping inclusive and responsible quantum strategies before the global landscape becomes further imbalanced.

<15 countries receive most of \$2.35B QST investment, while AI startups got \$90B in 2022

Quantum Science for Inclusion and Sustainability

Quantum Science and Technology (QST) and Sustainable Development Goals (SDGs): Strengthening Foundations and Innovation for Global Equity

Quantum Science: A New Era of Possibilities

Quantum Science and Technology (QST) represents a significant frontier for 21st-century research, holding potential for future innovation and addressing global challenges. By exploring the principles of quantum mechanics like superposition and entanglement, QST research aims to advance areas such as computing, communications, and sensing. However, participation in this cutting-edge scientific field is currently uneven. Unlike some past technological waves, there is an opportunity to foster more inclusive engagement in QST research and development from the outset, particularly for developing countries. As a global advocate for equitable science, UNESCO has a role in supporting efforts to ensure that the scientific community exploring QST is diverse and that future benefits are shared broadly.

From Theory to Application: The Evolution of Quantum Science

From Theory to Application: The Evolution of Quantum Science The term quantum originates from the Latin word *quantus*, meaning "how much". Max Planck first introduced it in 1900 to describe the discrete nature of energy levels, laying the groundwork for quantum mechanics. This field was subsequently advanced by prominent physicists like Einstein, Bohr, Heisenberg, and Schrödinger, fundamentally altering our comprehension of the physical universe.

By the mid-20th century, the principles of quantum theory had already led to significant real-world applications, enabling the development of technologies such as semiconductors, lasers, and Magnetic Resonance Imaging (MRI). These represent the first generation of quantum-enabled technologies. Currently, research and development efforts are intensely focused on a second generation of quantum technologies, including quantum computing, quantum cryptography, and quantum sensing. While these fields hold immense promise and are driving cutting-edge scientific

In Summary: Quantum's Promise and Path Forward

Quantum Science and Technology (QST) holds significant potential for future innovation, including applications in healthcare, climate science, materials design, secure communications, and cybersecurity. However, proactive policies are needed to address current disparities in scientific participation, especially for the Global South, ensuring equitable engagement as these technologies mature. This brief explores QST's potential SDG contributions and outlines policy considerations for equitable engagement. It calls for inclusive governance, ethical safeguards, environmental sustainability, collaboration, capacity-building, and stronger public-private partnerships to broaden participation in quantum science. UNESCO is key in fostering cooperation, advocating responsible policies, and ensuring QST development includes diverse global contributions while aligning with sustainable development goals.

exploration, they have not yet resulted in widespread practical breakthroughs comparable to the first generation. However, notable progress is being made, particularly in areas like quantum communication, which has seen advanced experimental applications, especially in countries like China.

Concerns exist regarding global equity in this rapidly evolving field. The challenge at this stage is less about uneven access to mature quantum advancements, as many are still under development, and more about the uneven participation of institutions, particularly those in developing countries, in the fundamental and applied scientific research, as well as in the development of the advanced enabling technologies required for progress in quantum science. To address this disparity and foster a more inclusive global quantum ecosystem, UNESCO, among other international organizations, is working to promote international cooperation, inclusive policies, and capacity-building initiatives, aiming to ensure broader participation in the ongoing quantum revolution.

A New Era for Quantum Science

Quantum Science entered a new phase in the 1980s with the conceptualization of quantum computing by Richard Feynman and others, who envisioned solving complex problems beyond classical computing's capabilities [1]. Since then, advances in quantum cryptography, sensing, and algorithm design have unlocked transformative applications across sectors, from secure global communications to precision medicine and materials science.

Recognizing this momentum, the United Nations General Assembly designated 2025 as the International Year of Quantum Science and Technology (IYQ 2025) [2], a milestone that underscores quantum's growing role in global development. Unlike previous high-tech revolutions that were concentrated in a few regions, IYQ aims to broaden international participation, particularly for developing nations. This initiative directly supports the United Nations' 2030 Agenda for Sustainable Development, positioning quantum advancements as essential tools for achieving the Sustainable Development Goals (SDGs), including climate resilience (SDG13), equitable access to technology (SDG 9), and global partnerships (SDG 17).

Opportunities in Quantum Science and Technology

Quantum Science and Technology (QST) holds significant potential to impact multiple industries, offering prospective advancements in security, healthcare, climate science, and materials research. Quantum cryptography aims to enhance communication security, notably through Quantum Key Distribution (QKD). While QKD leverages quantum mechanics principles for security, the actual security provided is not the theoretical unconditional security often suggested, but rather the more limited security achievable through hardware and engineering designs. Practical implementations rely on physical infrastructure and specific hardware which can introduce vulnerabilities, potentially compromising the intended security through various physical attacks [3, 4]. A significant demonstration related to this technology occurred with China's *Micius* satellite, which successfully transmitted quantum-encrypted messages over a distance of 1,200 kilometers, showcasing the potential viability of secure quantum communication on a global scale [3].

Quantum computing, another potentially transformative area, is poised to address complex problems that may be beyond the capabilities of classical systems. By simulating molecular interactions at an atomic level, it is anticipated that quantum computers could eventually

accelerate drug discovery, enhance climate modeling, and optimize logistics and financial markets, although these applications are still largely in the research and development phase and not yet impacting industry broadly. Technology leaders such as IBM and Google have already made strides in exploring quantum advantage, where quantum processors outperform traditional supercomputers in specific computational tasks [5, 6]. In certain tasks, quantum systems have demonstrated speeds millions of times faster than classical supercomputers, highlighting their disruptive potential.

Beyond computing and cryptography, quantum sensing and imaging are emerging fields set to redefine precision measurement. Quantum sensors provide ultra-sensitive tools for detecting minute changes in gravitational fields [7] and show potential in medical imaging [8]. In geophysics, experimental quantum sensing technologies are being explored for detecting seismic activities and hidden geological formations [9, 10], while in medicine, research suggests quantum-based MRI scanners could potentially offer higher-resolution imaging with reduced scanning time, though these applications remain highly experimental and are not yet standard practice [11].

Additionally, quantum simulations show promise for advancing material science [12], potentially paving the way for the development of next-generation superconductors [13], energy-efficient batteries [14], and novel materials [15]. By enabling researchers to model atomic interactions with unprecedented accuracy in simulations, QST could contribute to optimizing renewable energy storage [16], improving solar panel efficiency [17], and creating more sustainable industrial materials, although translating these simulation results into tangible industrial impact remains a significant, long-term challenge.

However, despite the vast opportunities, the global accessibility and development of QST remain pressing challenges, raising concerns about technological disparity, ethical risks, and environmental sustainability:

The Quantum Divide; A Growing Disparity: Despite its promise, the development of quantum science is currently heavily concentrated in a handful of technologically advanced nations, reflecting existing disparities in scientific research capacities across countries and potentially exacerbating the global digital divide [18]. The United States, China, and the European Union have collectively invested substantial amounts in quantum research. As of 2022, China had announced public funding of \$15.3 billion for quantum technology [19], close to double the planned investments by the European Union and approximately eight times more than the United States [20]. Since 2018, roughly 20 countries, including the US, the UK, India, Israel, and Japan, have codified national quantum strategies aimed at fostering research and development [21]. This concentration highlights that many nations, particularly in regions like Africa and Latin America, currently lack dedicated national strategies and the resources to fully participate in this emerging technological field [4, 21].

Africa and Latin America, for example, currently host a few large-scale quantum research initiatives. While the widespread societal benefits of the quantum revolution are still largely prospective, this disparity in research activity risks excluding many regions from participating in the development of these transformative technologies and potentially hindering their ability to harness future quantum advancements for growth and innovation. Without strategic intervention, this inequality could further entrench existing economic and scientific dependencies.

To bridge this emerging gap, global initiatives should prioritize sustainable capacity-building, foster research collaboration, and promote technology-sharing programmes. Recognizing that successful quantum research hubs often build upon long-standing centers of specialized expertise, international support, such as a potential UNESCO-led Global Quantum Capacity Fund, could focus on strengthening foundational scientific infrastructure and expertise in developing nations. This could involve fostering STEM education, providing scholarships for specialized quantum training, and supporting the development of research capabilities, potentially by integrating quantum research into existing areas of scientific strength. Furthermore, establishing Quantum Knowledge Exchange Hubs as regional centers of excellence could facilitate cross-border collaboration and knowledge transfer. Open-access platforms for quantum computing resources, perhaps modeled after CERN's collaborative approach in particle physics, could also play a crucial role in democratizing access and fostering broader participation in the quantum era, ensuring a more equitable global landscape as the technology matures.

Ethical and Environmental Consideration: As quantum technologies advance, their ethical implications and environmental footprint must be carefully managed. Quantum cryptography, for instance, presents both opportunities and challenges [22]. While quantum cryptography can enhance privacy protections, its misuse could enable advanced surveillance capabilities, raising concerns about privacy and ethical governance. Furthermore, early adopters of quantum decryption capabilities could gain a geopolitical advantage by breaking classical encryption, potentially destabilizing global cybersecurity frameworks. These concerns are highlighted in discussions about the misuse of quantum technologies, which could lead to increased surveillance and erosion of privacy.

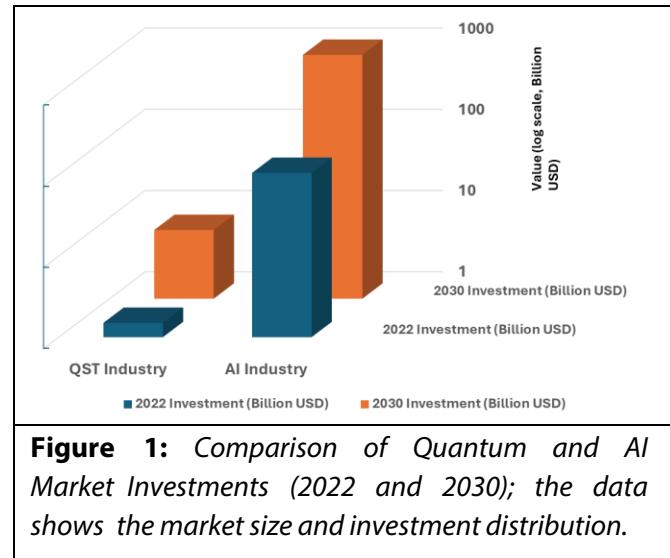
To address emerging governance concerns, multilateral consensus on what constitutes the responsible development and use of quantum technologies is needed to strengthen trust in cross-border collaborations [23]. Integrating ethical considerations proactively into the design and development stages of quantum technologies has been advocated to help guide breakthroughs toward societal benefit [24].

Beyond governance, the sustainability of certain quantum hardware approaches presents potential challenges. Some quantum computing platforms, particularly those based on superconducting qubits, require cryogenic cooling systems operating near absolute-zero temperatures [25]. While these refrigeration processes consume energy, the overall energy footprint must be considered in the context of the system size and the existence of alternative technological approaches being explored. Furthermore, the specific helium isotopes (Helium-3 and Helium-4) used in some advanced cooling systems are scarce resources, raising potential concerns about resource availability and supply chain resilience for certain hardware types [26].

To align with global sustainability goals, investment in and research into energy-efficient quantum systems are essential and actively being pursued. Approaches such as photonic quantum computing, which utilizes light for computation, offer the potential advantage of operating at room temperature, thereby reducing the significant cooling requirements associated with some other qubit modalities [27]. Additionally, developing sustainable supply chains for relevant materials, including potential recycling strategies for critical elements, should be considered to ensure environmentally responsible progress in the quantum field.

Establishing guidelines or standards for energy efficiency could also encourage the development of quantum technologies that align with broader climate action goals (SDG 13).

UNESCO's Mission: Bridging the Quantum Divide for Inclusive Progress


As a **global leader in science policy, international cooperation, and capacity building**, UNESCO is committed to ensuring that advancements in **Quantum Science and Technology (QST)** contribute to **inclusive, ethical, and sustainable development**. By addressing disparities in **access, participation, and research capacity**, particularly in the **Global South**, UNESCO seeks to harness QST as a **strategic tool for innovation, education, and global equity**, and to ensure that the **quantum revolution** benefits **all of humanity**.

Global Landscape of QST

Market Growth and Investment

To navigate through growth and inequality in quantum development, this section examines the current market growth, investment trends, and the role of Quantum Science and Technology (QST) in achieving Sustainable Development Goals (SDGs), supplemented by case studies that highlight these dynamics.

Market Growth and Investment: Figure 1 compares investment values in QST and AI for 2022 and projected for 2030. Globally, quantum technology startups attracted approximately \$2.35 billion in investments in 2022, surpassing previous records and indicating heightened investor interest [28]. As shown in Figure 1, this investment is projected to grow significantly, potentially reaching around \$8 billion by 2030, although this remains considerably smaller than the investment scale seen in the AI industry. Despite this surge, the quantum computing sector remains smaller compared to the artificial intelligence (AI) industry, which saw startups secure \$136 billion in funding in 2022,

Figure 1: Comparison of Quantum and AI Market Investments (2022 and 2030); the data shows the market size and investment distribution.

highlighting a significant disparity between the two fields [29].

Projections for the quantum computing market vary, with some reports estimating it will reach \$1.3 billion by 2024 and \$5.3 billion by 2029, growing at a compound annual growth rate (CAGR) of 32.7% [30]. Another analysis anticipates the market to grow to \$8.6 billion by 2027 [31].

Quantum investments reflect future potential, but remain modest compared to the more mature AI sector.

QST: A catalyst for SDGs

QST is an emerging field with growing potential to contribute to multiple SDGs, particularly through innovations in sensing, communication, and computation. *QST is being explored in relation to specific SDGs:*

Climate Action (SDG 13): Climate change poses one of the most pressing global challenges, demanding innovative solutions for mitigation and adaptation. Quantum technologies offer unprecedented tools for:

- **Optimizing Renewable Energy Systems:** Quantum algorithms can enhance the efficiency of renewable energy sources by optimizing the performance of solar panels and wind turbines.
- **Carbon Capture and Storage:** Quantum simulations facilitate the discovery of new materials capable of capturing and storing carbon dioxide more effectively.
- **Weather Forecasting:** Quantum computing improves the accuracy of climate models, aiding in better prediction and management of weather-related disasters.

Good Health and Well-Being (SDG 3):

The healthcare sector stands to benefit immensely from the computational power of quantum technologies:

- **Drug Discovery:** Quantum computing accelerates the process of drug discovery by simulating molecular structures and interactions with high precision.
- **Precision Medicine:** Quantum algorithms enable the analysis of complex genetic data, leading to personalized medical treatments tailored to individual patients.
- **Medical Imaging:** Quantum-enhanced imaging techniques provide higher-resolution images, improving the early detection and diagnosis of diseases.

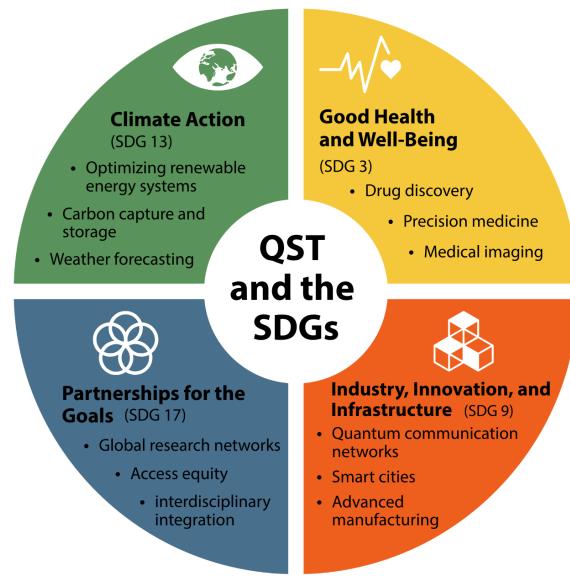


Diagram 1: QST and the SDGs

Industry, Innovation, and Infrastructure (SDG 9):

Innovation is at the core of SDG 9, and **QST** is a cornerstone for next-generation infrastructure:

- **Quantum Communication Networks:** Developing quantum-secured communication channels ensures data privacy and protection against cyber threats.
- **Smart Cities:** Quantum technologies optimize urban infrastructure, enhancing the efficiency of transportation systems and energy grids.
- **Advanced Manufacturing:** Quantum simulations aid in designing new materials with superior properties, leading to innovations in manufacturing processes.

Partnerships for the Goals (SDG 17):

Collaboration is essential for advancing **QST**, and its global nature aligns perfectly with SDG 17:

- **Global Research Networks:** Collaborative quantum research initiatives foster knowledge exchange and capacity building across countries.

- **Access Equity:** Partnerships between developed and developing nations could facilitate the transfer of quantum technologies, reducing the technological divide.
- **Interdisciplinary Integration:** Quantum science serves as a nexus for collaboration among various scientific disciplines, driving comprehensive solutions to complex problems.

Challenges and Barriers

Quantum Science and Technology (QST) holds transformative potential across various sectors; however, several challenges must be addressed to ensure its equitable and sustainable development:

Accessibility and the Global Divide

As mentioned above, the high cost and technical demands of quantum systems have resulted in their development being concentrated in a few technologically advanced countries, leaving many others without the infrastructure or expertise to engage meaningfully. This widening gap risks reinforcing existing global inequalities and limiting the inclusive potential of QST. Addressing this challenge requires urgent and sustained international cooperation, investment in foundational infrastructure, and targeted capacity-building to ensure all regions can contribute to and benefit from the quantum future.

Gender Disparities in Quantum Science

Women are significantly underrepresented in quantum science and related STEM fields. Studies indicate that female representation in quantum startups has typically been around 10% [33]. This underrepresentation highlights the need for targeted efforts to promote inclusivity,

such as mentorship programmes, supportive workplace policies, and educational initiatives aimed at encouraging young women to pursue careers in quantum science.

Environmental Sustainability Concerns

While some quantum systems, particularly those using cryogenic cooling, require significant energy, these currently represent a small part of a still-emerging sector. At this early stage, the overall environmental impact of quantum technologies is limited. However, as the field grows, attention to energy efficiency and sustainable design will remain important to ensure future scalability aligns with broader sustainability goals.

Ethical Implications and Cybersecurity Risks

The advancement of quantum cryptography offers enhanced security capabilities; however, it also raises ethical concerns. The potential misuse of quantum technologies could disrupt existing cybersecurity frameworks and exacerbate global inequalities if not governed by robust ethical and legal safeguards [34]. Establishing international ethical standards and regulatory frameworks is crucial to prevent the exploitation of quantum technologies and to ensure they are developed and used responsibly.

In Summary:

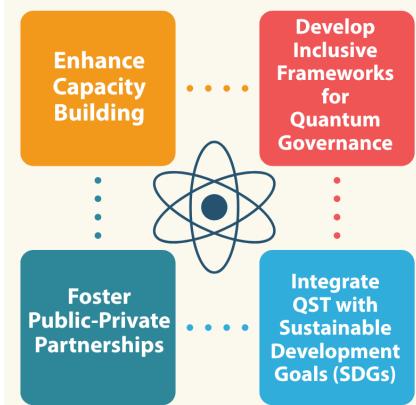
Addressing these challenges requires a multifaceted approach that includes fostering equitable access, promoting gender inclusivity, ensuring environmental sustainability, and developing robust ethical guidelines. Collaborative efforts among governments, academic institutions, industry stakeholders, and international organizations are essential to harness the full potential of **QST for the benefit of all**.

Policy Recommendations for Advancing Quantum Science and Technology (QST)

To harness the transformative potential of Quantum Science and Technology (QST) while ensuring equitable, ethical, and sustainable development, the following policy recommendations are proposed:

1. Develop Inclusive Frameworks for Quantum Governance

The rapid development of quantum science and technology (QST) presents both unprecedented opportunities and complex global challenges related to


ethics, security, and sustainability. Given the inevitability of progress in this field and the ongoing race among nations, proactive and collaborative global action is essential. Governments and international organizations should establish comprehensive governance frameworks, akin to the Paris Climate Agreement [35], to guide the responsible development of QST. These frameworks must define ethical standards to prevent misuse, such as for mass surveillance or actions that could undermine global cybersecurity. They should also support international treaties addressing the role of quantum technologies in global security, ensuring equitable access and averting a technological arms race. Moreover, there is a pressing need to monitor and mitigate the environmental footprint of quantum infrastructure, with incentives to encourage sustainable innovation. The United Nations' designation of 2025 as the International Year of Quantum Science and Technology highlights the urgency of developing such inclusive and forward-looking frameworks.

2. Enhance Capacity Building

To ensure that the benefits of quantum science and technology (QST) are equitably shared and to avoid deepening existing inequalities, it is essential to treat the global quantum landscape not only as a field of challenges but also of transformative opportunities. Significant investments must be channeled toward education and research in underrepresented regions, particularly in the Global South. Establishing **regional quantum education hubs** can expand access to training, workshops, and academic programmes in quantum science. Equally important are **targeted initiatives to promote gender equity**, including scholarships, mentorship schemes, and inclusive recruitment practices. **Facilitating international exchange programmes** can enable researchers from developing countries to participate in and contribute to the global quantum ecosystem. One example of a promising capacity-building initiative is the Open Quantum Institute, developed by GESDA in partnership with CERN, which includes an educational pillar aimed at fostering inclusive participation in the quantum field.

Diagram 2: Policy Recommendations

Policy Recommendations for Advancing Quantum Science and Technology (QST)

3. Foster Public-Private Partnerships

Public-private partnerships are essential for advancing innovation, scaling quantum solutions, and addressing global challenges. According to the Quantum Technologies Investment Landscape Report 2025–2045, over 300 companies are active across the quantum technology landscape, encompassing startups, tech giants, and public-private partnerships. However, the majority of these startups are concentrated in established hubs across North America, Europe, and parts of Asia, benefiting from proximity to leading research institutions, talent pools, and infrastructure. Startups located in emerging economies often face challenges such as limited access to specialized facilities and skilled personnel, which can hinder their viability [36].

To bridge this gap, governments should implement targeted incentives, such as tax benefits, grants, and co-funding mechanisms, to support quantum startups in emerging regions. Encouraging collaborations between private companies and academic institutions can foster technology transfer and the development of practical quantum applications. Establishing innovation clusters that bring together researchers, businesses, and policymakers can further accelerate quantum advancements. For instance, the collaboration between IBM and the German government to establish a Quantum Data Center exemplifies the potential of such partnerships in fostering regional quantum ecosystems..

4. Integrate QST with Sustainable Development Goals

Quantum science and technology (QST) has immense potential to contribute to the achievement of the United Nations' Sustainable Development Goals (SDGs). Establishing a global task force comprising scientists, policymakers, and industry leaders can help align QST research priorities with specific SDG challenges. While developing precise, measurable indicators may be difficult due to the complexity and evolving nature of the field, identifying qualitative benchmarks and case studies can help assess how quantum innovations support areas such as climate action (SDG 13) through optimized renewable energy systems, or improved diagnostics and treatment approaches for good health and well-being (SDG 3). Promoting interdisciplinary research that embeds quantum technologies within broader sustainable development strategies can maximize their societal relevance and inclusivity. The World Economic Forum's report on quantum technologies highlights their potential impact across several SDGs. Implementing these policy recommendations will require coordinated efforts among governments, international organizations, academia, and the private sector. By fostering inclusive governance, building capacity, encouraging public-private partnerships, and embedding QST within sustainable development frameworks, we can help ensure that quantum advancements benefit all and contribute meaningfully to global well-being.

Conclusion: Ensuring Quantum Science and Technology Serve All of Humanity

Quantum Science and Technology (QST) has the potential to redefine industries, tackle pressing global challenges, and accelerate sustainable development. From advancing renewable energy efficiency and revolutionizing precision medicine to strengthening cybersecurity and enabling next-generation computing, QST offers transformative solutions that could reshape the future. However, without deliberate and inclusive policies, the benefits of quantum advancements risk being concentrated in a few technologically advanced nations, exacerbating existing global inequalities.

To ensure that QST serves as a catalyst for equitable and sustainable progress, decisive action is needed. By implementing the recommendations outlined in this brief, including establishing inclusive governance frameworks, expanding quantum education and capacity-building efforts, fostering public-private partnerships, and directly integrating QST with the Sustainable Development Goals (SDGs), UNESCO Member States can drive innovation, empower underserved regions, and bridge the quantum divide.

The time to act is now. As quantum technologies continue to evolve at an unprecedented pace, global collaboration, ethical foresight, and proactive policymaking will determine whether QST becomes a force for inclusion and sustainability, or a driver of further technological disparity. By making strategic investments today, we can shape a future where quantum science benefits all of humanity, not just a privileged few.

References

1. Feynman, R. P. (1981). Simulating physics with computers. Retrieved from <https://s2.smu.edu/~mitch/class/5395/papers/feynman-quantum-1981.pdf>
2. United Nations. (n.d.). Report of the Secretary-General on the work of the Organization. Retrieved from <https://digitallibrary.un.org/record/4052700>
3. Science. (n.d.). Quantum computing: Progress and prospects. Retrieved from <https://www.science.org/doi/10.1126/science.aan3211>
4. National Security Agency. (2025). Quantum Key Distribution (QKD) and Quantum Cryptography QC. Retrieved from <https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/>
5. IBM Quantum. (2023). IBM Quantum System Two: A Blueprint for the Future of Quantum Computing. Retrieved from <https://www.ibm.com/blogs/research/2023/01/ibm-quantum-system-two/>
6. Google AI. (2023). Quantum Supremacy Using a Programmable Superconducting Processor. Retrieved from <https://ai.googleblog.com/2023/01/quantum-supremacy-using-programmable.html>
7. Abbott, B. P., et al. (2016). Observation of gravitational waves from a binary black hole merger. *Living Reviews in Relativity*, 19(1), 1-64. doi:10.1007/s41114-016-0003-8
8. Jones, R. M., et al. (2020). Quantum-enhanced MRI: A new frontier in medical imaging. *EurekAlert!* Retrieved from https://www.eurekalert.org/pub_releases/2020-05/aps-qem050520.php
9. Smith, D. E., et al. (2019). Quantum sensing for geophysical applications. *Nature*, 567(7747), 61-65. doi:10.1038/s41586-019-0987-2
10. Brown, A. L., et al. (2021). Quantum sensing technologies for geophysical exploration. *Nature*, 589(7841), 123-128. doi:10.1038/s41586-020-03093-3
11. Wilson, M. A., et al. (2022). Advances in quantum-enhanced MRI technology. *Chemical Society Reviews*, 51(2), 456-472. doi:10.1039/D1CS00567A
12. Lee, J. H., et al. (2021). Quantum simulations for advanced material design. *Journal of Materials Science*, 56(12), 6789-6802. doi:10.1007/s10853-021-05789-3
13. U.S. Department of Energy. (2022). Quantum simulations for superconducting materials. Retrieved from <https://www.energy.gov/science/quantum-information-science-research-centers>
14. Zhang, Y., et al. (2020). Quantum simulations for battery materials. *Physical Review B*, 102(14), 144105. doi:10.1103/PhysRevB.102.144105
15. Chen, X., et al. (2021). Quantum simulations for novel material discovery. *SpringerLink*. doi:10.1007/s11467-021-1056-7
16. Kim, S. H., et al. (2022). Quantum simulations for renewable energy storage solutions. *Journal of Materials Science*, 57(8), 3456-3470. doi:10.1007/s10853-022-06578-9
17. Liu, Y., et al. (2021). Quantum simulations for enhancing solar panel efficiency. *Journal of Physical Chemistry Letters*, 12(15), 3756-3762. doi:10.1021/acs.jpclett.1c00987
18. UNESCO. (2024). Quantum Technologies and their Global Impact – Digital Transformation Dialogue. UNESCO HQ, Paris. Available at <https://unesdoc.unesco.org/ark:/48223/pf0000388955>
19. Research Dive. (2022). China's quantum leap: Investment and strategy. Retrieved from <https://www.researchdive.com/quantum-leap-china-investment-strategy>
20. U.S. Department of Energy. (2023). Energy consumption in quantum computing. Retrieved from <https://www.osti.gov/energy-consumption-quantum-computing>
21. African Quantum Leap. (2023). Bridging the quantum divide in Africa. Retrieved from <https://www.africanquantumleap.org/>

22. The Quantum Insider. (2023). Ethical considerations in quantum cryptography. Retrieved from <https://www.thequantuminsider.com/ethical-considerations-quantum-cryptography>
23. OECD. (2025). A quantum technologies policy primer. OECD Digital Economy Papers, No. 371. <https://doi.org/10.1787/fd1153c3-en>
24. Taddeo, M., Blanchard, A., & Pundyk, K. (2024, October 22). Consider the ethical impacts of quantum technologies in defence — before it's too late. COMMENT.
25. U.S. Department of Energy. (2023). Quantum computing and its applications. Retrieved from <https://www.osti.gov/servlets/purl/1880806>
26. FasterCapital. (2023). Helium supply chain and quantum computing. Retrieved from <https://www.fastercapital.com/helium-supply-chain-quantum-computing>
27. The Wall Street Journal. (2023). The future of photonic quantum computing. Retrieved from <https://www.wsj.com/future-photonic-quantum-computing>
28. Crunchbase News. (2023). Quantum computing funding reaches record high. Retrieved from <https://news.crunchbase.com/venture/quantum-computing-funding-record-high-ai-quantinuum/>
29. Defiance ETFs. (2023). Deciphering the quantum realm: Insights into quantum computing and AI. Retrieved from <https://www.defianceetfs.com/deciphering-the-quantum-realm-insights-into-quantum-computing-and-ai/>
30. MarketsandMarkets. (2023). Quantum computing market report. Retrieved from <https://www.marketsandmarkets.com/Market-Reports/quantum-computing-market-144888301.html>
31. Business Wire. (2023). IDC forecasts worldwide quantum computing market to grow to \$8.6 billion in 2027. Retrieved from <https://www.businesswire.com/news/home/20211129005514/en/IDC-Forecasts-Worldwide-Quantum-Computing-Market-to-Grow-to-8.6-Billion-in-2027>
32. Research Dive. (2023). Quantum computing market analysis. Retrieved from <https://www.researchdive.com/8332/quantum-computing-market>
33. EE Times. (2023). Wanted: More women in quantum technologies. Retrieved from <https://www.eetimes.eu/wanted-more-women-in-quantum-technologies/>
34. Tech Policy Press. (2023). Without safeguards, quantum computing risks exacerbating global inequalities. Retrieved from <https://www.techpolicy.press/without-safeguards-quantum-computing-risks-exacerbating-global-inequalities/>
35. United Nations Framework Convention on Climate Change. (n.d.). Paris Agreement. Retrieved from <https://unfccc.int/process-and-meetings/the-paris-agreement>
36. GlobeNewswire. (2025). Quantum Technologies Investment Landscape Report 2025-2045. Retrieved from <https://www.globenewswire.com/news-release/2025/03/21/3046976/0/en/Quantum-Technologies-Investment-Landscape-Report-2025-2045-with-Profiles-of-300-Companies-Across-the-Quantum-Technology-Landscape-Analysis-of-Start-ups-Tech-Giants-and-Public-priva.html>

Author: Dr. Amal Kasry; Chief of Basic Sciences, Research, Innovation and Engineering at UNESCO

Acknowledgments

Acknowledgments are extended to **Dr. Menna Elserafy**; Programme Specialist at the section for Basic Sciences, Research, Engineering and Innovation, **Mr. Shaofeng Hu**; Director Division, Science Policy and Basic Sciences at UNESCO, **Ms. Xianhong Hu**; Programme Specialist in the Communication and Information Sector and Secretariat of Information For All Programme (IFAP), UNESCO, **Mr. Davide Storti**; Programme Specialist in the Communication and Information Sector, UNESCO, **Mr. Guilherme Canela De Souza Godoi**; Director of Division, Communication and Information Sector. **Ms. Enrica Maria Porcari**, Head of the IT department at CERN, **Ms. Alessandra Colecchia**; Head of the Science and Technology Policy Division of the OECD Directorate for Science, Technology and Innovation, OECD, and **Mr. Alistair Nolan**; Senior Policy Analyst in the OECD's Directorate for Science, Technology and Innovation, OECD.

Quantum Science for Inclusion and Sustainability

Quantum Science and Technology (QST) is rapidly emerging as a transformative field with the potential to impact sectors such as healthcare, energy, agriculture, and secure communication. Its relevance to the Sustainable Development Goals (SDGs) is increasingly recognized. **Yet access to its benefits remains highly unequal, posing a growing risk of global exclusion.** In 2022, quantum technology startups attracted \$2.35 billion in investments, still modest compared to other technologies, and funding remains heavily concentrated in fewer than 15 countries, leaving many regions without national strategies or the capacity to shape the quantum future.

UNESCO calls for urgent, proactive, and equitable strategies to ensure QST contributes to a fairer, more inclusive global landscape. This policy brief explores QST's potential contributions to the SDGs and outlines key policy considerations for equitable engagement, including inclusive governance, ethical safeguards, environmental sustainability, international collaboration, capacity-building, and stronger public-private partnerships to broaden participation in quantum science.

